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Wave-vortex dynamics 
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Abstract. Numerical studies of two-dimensional turbulence show the importance of 
localised structures, both in the small scales where intermittent transfers occur and in the 
large scales dominated by coherent vortices. This work is an attempt to establish a more 
appropriate theoretical framework than the usual Fourier representation. We present a 
dual representation, mixing continuous field and point vortices. The difficulties arising 
from the redundancy of the representation are solved through a hypothesis of mutual 
advection. The resulting equations conserve the natural invariants of the system. As a first 
application, we show that introducing a weakly charged point vortex in a continuous field 
with quasiperiodic behaviour induces a purely Lagrangian chaos. As the point vortex 
grows in intensity, it becomes quasistationary and the induced phase mixing dominates 
the behaviour of the continuous field. 

1. Introduction 

There is a growing interest, both in theoretical physics and in fluid dynamics, to study 
the statistical properties of 2~ Navier-Stokes equations at high Reynolds number. 
Natural motivations lie in the approximate two dimensionality of large scale dynamics 
of geophysical fluids and rapidly rotating fluids in astrophysics. In addition, some 
experimental data are available from several laboratory experiments that have been 
designed in the last few years (Hopfinger et al 1982, Sommeria and Verron 1984, 
Couder 1984). On the other hand, with the present generation of supercomputers it 
is possible to achieve high resolution simulations at large Reynolds number (Brachet 
et a1 1986), whereas this is not yet the case for 3~ turbulence, for which the high 
Reynolds number range is not accessible by direct simulation. 

A striking feature of ZD turbulent flows, observed both numerically and experi- 
mentally, is their ability to develop long lived vortices which concentrate a large amount 
of vorticity. These coherent structures obtain for a very large range of conditions 
(Basdevant et al 1981, McWilliams 1984, Hopfinger et al 1982) in decaying systems 
and in forced experiments as well. They bear strong similarities with observed eddies 
in the ocean (Ring Group 1981). The vortices are clearly seen in figure 1 which shows 
a vorticity field, taken from the history of a numerical integration of ZD Navier-Stokes 
equations in a squared periodic box (Benzi et a1 1987). The high resolution of this 
experiment (512 x 512) allows generation of vortices within small scales of motion, not 
seen in previous studies. 

In previous studies (Babiano et a1 1987, McWilliams 1984, Benzi et a1 1986), it 
was suggested by qualitative and quantitative arguments that 2~ turbulent flows can 
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Figure 1. Contour plot of the vorticity field obtained by a numerical simulation for a 
decaying turbulence (from Benzi el a/ 1987). The model employed is a spectral model 
with 512x512  grid resolution. Dissipation is prescribed by a superviscosity term of the 
form -vA3Vy, V being the stream function of the system and Y = 2 x The boundary 
conditions are periodic with period 2 ~ .  

be somehow split into two main components, coherent structures on one side and 
background field on the other, which exhibit two kinds of dynamical behaviour. 
Coherent structures are characterised by a strong correlation between the vorticity field 
and the stream function, which implies weak non-linearities and inhibition of the 
enstrophy cascade towards small scales (McWilliams 1984, Benzi et a1 1986). On the 
other hand, the advection by coherent structures plays the major role in the evolution 
of the background vorticity field (Babiano et a1 1987). An enstrophy cascade towards 
small scales is observed within the last region, leading to a k-3  partial spectrum in 
agreement with the classical phenomenology (Babiano et al 1987, Benzi et a1 1986). 
Within the background field, the vorticity behaves essentially as a passive scalar. 

Although the flow is usually observed from an Eulerian point of view, the turbulent 
behaviour is partly of Lagrangian source. By Lagrangian turbulence, we mean the 
chaotic and irregular trajectory of a passive particle advected by the flow. It has been 
shown (Aref 1984) that Lagrangian turbulence is present in two dimensions even if 
the velocity field behaves periodically. 

A more delicate question concems the stability and the dynamics of coherent 
vortices. Many authors have observed that these structures are close to local inviscid 
solutions of the Euler equation. It is clear that any radial distribution of vorticity 
within a disc is such a solution. Why some profiles are robust to dissipation and 
external perturbations still remains unclear. A particular solution was given by Leith 
(1984) which minimises the enstrophy for a given energy or total vorticity. A class of 
non-axisymmetric solutions, with two vortices of opposite signs pairing in a compact 
structure, is known as modons in the literature (Flier1 et a1 1980). In most cases, 
observed vortices persist without significant change in their shape for a very long time. 



Wave-  vortex dynamics 5127 

Collisions between vortices develop transient zones of intense straining in the back- 
ground field. When two vortices with the same sign get sufficiently close to each other, 
the interaction is strongly inelastic and can lead, in some rare events, to the absorption 
of the weaker vortex by its companion. 

In any case, many Fourier modes are needed to correctly simulate the dynamics 
of coherent structures. The non-local description provided by the spectral expansion 
is not well suited to capture the characteristics of the vortices in a few numbers. 
Another possible way of tackling the problem is to study the dynamics of point vortices 
(Chorin 1973). It is a priori clear that coherent structures can be represented by point 
vortices with the same degree of difficulty as Fourier modes. However, at some distance 
from a localised vorticity concentration, the induced velocity is close to the velocity 
induced by a point vortex located at the centre of mass of the concentration with the 
same total vorticity. Provided that a scale separation exists between the lifetime of 
the vortex and the turnover time of the incoherent part of the field, it is tempting to 
replace the continuous vortex by a single point vortex. An appealing feature of 
point-vortex systems is the Hamiltonian flow of their dynamics. A major consequence 
is the existence, for a large but finite number of vortices, of statistical equilibrium 
properties which have been investigated by many authors (Onsager 1949, Novikov 
1975, Frohlich and Ruelle 1982). 

A second class of motivations arises from the dynamics of small scales. In 2~ 

turbulent flows, the enstrophy is cascaded towards the small scales through non-linear 
interactions (Kraichnan 1967, Rose and Sulem 1978) but the measure of the spatial 
domain in which such transfers are active decreases as the scale decreases (Basdevant 
and Sadourny 1983, Benzi er a1 1984). In the absence of any organised large scale 
flow, intermittency is able to steepen the energy spectrum slope (Basdevant et a1 1981, 
Benzi et a1 1984). Point vortices are again a good candidate to provide a local 
description of small scale activity. Dissipation can be achieved by adding random 
noise to the deterministic motion and feedback effects to the large scales can still be 
obtained by clustering of the vortices. 

All the above considerations suggest that the duality local-global or Lagrangian- 
Eulerian can be studied by a combined approach where point vortices and Fourier 
modes are considered for the 2~ Euler equations. 

One may wonder if a redundant description of any physical system can be of 
interest to obtain a better understanding of the dynamics. Our approach is motivated 
by the physical assumption that 2~ Euler equations seem to support this duality and 
that a good understanding of the physical properties can be achieved by explicitly 
considering global and local features in a coupled model. We are aware that the 
redundancy of this description will induce mathematical problems. The functional 
space introduced in this way will show, for instance, lack of orthonormality. As a 
consequence we may expect that some of the invariants of motion are missed. 

In this paper, we discuss these difficulties as well as the consequences of this 
approach. The motivation of this study is not to solve all the problems but to encourage 
future works in a direction which we believe promising for a better understanding of 
2~ turbulence. In § 2, we discuss a possible model for wave-vortex interactions which 
fulfils prescribed physical requirements. We start discussing our problem in the 
continuous limit and then we define, in § 3, the projection operator on a truncated set 
of Fourier modes. The ambiguities of such projections are discussed in terms of the 
physical constraints. Section 4 is devoted to a discussion of a minimal model based 
on two Fourier modes and one point vortex. Although the model cannot be solved 



5128 R Benzi and B Legras 

analytically we derive some simple consequences which can be related to recent 
numerical simulation of ZD turbulent flows. 

In 8 5 ,  we study by numerical integration the possible models proposed in § 2. Five 
Fourier modes are considered together with one point vortex. We show that Lagrangian 
turbulence is generated by the motion of the vortex. A striking feature of these 
simulations is that the conservation of total energy does not seem to be an essential 
constraint of the dynamics although the enstrophy conservation does. We conclude 
in 0 6 with a list of addressable problems which can be possibly tackled by the method 
proposed in this paper. Most of them are relevant both for ZD turbulence theory and 
for geophysical fluid dynamics. 

2. Formal properties 

We consider a two-dimensional rotational flow in a domain D with rigid or periodic 
boundary conditions in which local concentrations of vorticity exist in subdomains d , .  
Inside a subdomain d , ,  the vorticity is much larger than in the surrounding h i d .  We 
assume that the dynamics preserve these concentrations for a long time. The previous 
section recalls that numerical experiments and observations of natural systems strongly 
support this hypothesis. 

The fundamental simplification of our approach is to replace each patch of concen- 
trated vorticity by an isolated vortex with a vorticity charge equal to the integrated 
vorticity over the patch. The vorticity field is then separated into two components, a 
continuous field and a discrete distribution of vortices. 

The self-interaction of the continuous field leads to the well known partial differen- 
tial vorticity equation 

D q / D t = a q / a t + J ( $ ,  q ) =  F (1) 

where $ is the stream function such that q = A $ .  J is the Jacobian operator and F 
stands for forcing and dissipation. 

If F is set to zero, with appropriate boundary conditions, equation (1) conserves 
the energy E = I D  del $’ d u  and all moments of the vorticity q, among which the 
enstrophy 2 = I D  A G 2  da .  This latter quantity plays a special role in the classical 
phenomenology of ZD turbulence (Kraichnan 1967, Rose and Sulem 1978). When the 
system is forced into a narrow band of wavenumbers, the injected enstrophy is 
transferred by non-linear interactions towards small scales, where it is dissipated. 
Unlike 3~ turbulence, the energy is not cascaded towards small scales but is essentially 
transferred towards large scales where it can build up coherent structures. 

In the inviscid case, a system of point vortices is an exact solution of the Euler 
equation. Each vortex conserves its vorticity during the evolution. An important 
feature of this system is the existence of a Hamiltonian from which the equations of 
motion are derived (Kraichnan and Montgomery 1980). 

In this formulation, the stream function of an individual vortex of vorticity q located 
in ro is given by the Green function G(x, r )  of the Poisson equation in D: 

AG(x, ro) = S(x - ro) 

$o(x)=rG(x, ro). (3) 

The self-energy and self-enstrophy of this vortex are infinite, but the interaction energy 
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or Hamiltonian of a family {r,, r , }  of vortices is finite: 

H = Eint= - 4  T,rJG(r , ,  rJ)  
I f J  

where H is an integral of motion and the motion of each vortex is determined by 

i ,= r,kxgradG(r, ,r , )=kxgrad$,(r , ) .  
J f l  

(4) 

Here Gi is the stream function induced by the system of vortices except the vortex i. 

2.1. Equations of motion 

As stated above, we expand the vorticity field in a discrete distribution of vortices 
q u ( x )  = Z, T i S ( x  - r i )  and a continuous field q w ( x ) .  If the point vortices are considered 
as limits for local concentrations of vorticity, the latter representation is redundant. 
This mathematical ambiguity must be removed by a physical ansatz in order to obtain 
a closed set of equations of motion. 

We make the basic assumption that the intensity of the vortices is unchanged 
through the interaction with the zonal flow. The nature of this assumption is heuristic: 
there is clear evidence from experiments which produce localised eddies that these 
latter vary in intensity following the interaction with their environment. However, we 
want precisely to eliminate the complex mechanisms which generate and maintain the 
eddies in order to study at first the mutual effects of eddies and continuous field on 
their respective dynamics. On the other hand, a variation of the amplitude of a vortex 
implies a local associated variation of the vorticity of the mean field. Since we intend 
to apply this formalism with a truncated expansion of the continuous field over large 
scales only (see 0 3 below), we can hardly achieve local exchanges within this 
framework. 

The sole variable quantity associated with the vortices is their position. Each vortex 
is advected by its companions and by the continuous field. For the ith vortex, we have 

ii = k x grad($,, + & ) I r = , ,  . ( 6 )  

On the other hand, the continuous vorticity is advected by the continuous field and 
by the vortices. We have 

where $, is the total stream function of the system of vortices. In the following, qui 
denotes the normalised stream function of the ith vortex centred in r = r i .  So we have 

Apparently, equation ( 7 )  is not defined at the location of vortices and may contain 
spurious contributions from their vicinity. We can see that this is not the case by 
considering a vortex with unit vorticity centred in 0 whose stream function in the local 
cylindrical coordinate system ( p ,  e) is cp,( p )  = In( p / p o ) .  The Jacobian of cpv and qw 
is then 

4, = $i + qi'Pvi. 

P ' (  ay "".> ax 
aqw J ( c p , ,  q w )  =- cos @--sin e- . 
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Since qw is smooth, we may expand its derivatives in the vicinity of the origin: 

Integrating over a small disc S of radius a centred in 0, we see from (8) that the local 
contribution of the vortex is at most of order a3 .  If we define J(cp,, q w )  at the origin as 

the previous result shows that this limit is zero. We may thus consider that (7) is 
formally valid at the location of vortices without difficulties, using the ansatz 

We want to warn the reader of a conceptual difficulty in using the partial differential 
equation (7) .  Let us denote by A the smallest scale of variability of the continuous 
field which corresponds usually to the dissipation scale but might also be a prescribed 
truncation when only the large scale components are retained. The coupling with a 
point vortex described by equation (7)  breaks this property since it introduces arbitrary 
small scales in the motion. In order to recover physical consistency, it is necessary to 
consider equation (7)  as valid when averaged over A. However, we will first establish 
in the following the formal invariants of the motion described by equations ( 6 )  and 
(7),  before discussing their physical meaning when applying a spatial average. 

J ( c p i ,  qw)(ri) 0. 

2.2. Formal invariants of motion 

In the inviscid case, i.e. when F 3 0, the pair of equations ( 6 )  and (7) possesses several 
integrals of motion. Let us first consider the enstrophy of the continuous field 2, = ( q t ) ,  
where the brackets mean integration over the whole domain D. 

If we assume that the boundaries of D are streamlines or are periodic, 2, is 
conserved by the time evolution since ( J (  4, + $,, 4:)) = 0. This property holds equally 
for any other moment of the continuous vorticity qw and bears no differences with the 
case where the continuous field is considered alone. 

The self-energy of an individual vortex cannot be defined and there is no enstrophy 
for the interaction between the vortices. However, an interaction enstrophy between 
the continuous field and the vortices can be defined as 

z , w = C  r iqw(f i ) .  (10) 
I 

Using ( 6 ) ,  (7) and (9), we show that Z,, is conserved: 

As previously, this property still holds if we replace qw or qi in ( 8 )  by any function of 

The conservation of all the moments of vorticity in the Euler equation is a con- 
sequence of the conservation of vorticity for each particle of fluid. The separate 
conservation of 2, and Z,, shows that similar properties are maintained in our system. 

4 w  Or qi. 
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In the same way, we define a self-energy of the continuous field and an interaction 
energy of the continuous field and the vortices: 

E, =%(grad +I2) (12) 

In addition, we need also to consider the interaction energy of the system of vortices 

E,  = - t  c r i r j q u i ( r j ) .  
i # j  

Using (6) and (7) and integrating by parts, we derive the evolution equations for the 
three energies 

( r i ) +  i i .  grad +,(r i )  

r # ( A - ' J ( + " + + , ,  q W ) ( r l ) - J ( + " ,  + , ) ( r I ) )  
I 

= ( + , J ( + , ,  4,N-C r i J ( + u ,  + w ) ( r , ) .  (17) 
I 

Combining equations (15)-(17), we obtain a conservation law for total energy: 

E,+ E,,  + E, = 0. (18) 

Equations ( 1 9 . 4  17) describe the exchanges between the continuous field and the 
system of vortices. In order to extract energy from the vortices, the velocity of the 
continuous field must point to the right (left) of the velocity induced by the other 
vortices at the location of a positive (negative) vortex. In order to extract energy from 
the continuous field, the stream function of the vortices must be anticorrelated with 
the deformation field of the continuous vorticity. Notice also that there is no direct 
exchange between E, and E, but that the energy must be conveyed through Euw. 

3. Truncated system 

We now discuss the modifications induced on (6) and (7) when the continuous field 
is represented by a finite number of degrees of freedom such that the fluctuations of 
the continuous field occur at scales larger than A. 

In the present case, it is most convenient to represent the continuous field as a 
finite expansion in terms of orthogonal functions in the domain D. When D has simple 
frontiers with periodic or free-slipping conditions, we choose the eigenfunctions qk(  r )  
of the Laplacian as a basic set. They verify 

L\Qk = -k2qk  (19) 
where k is a wavenumber and k2  = Ikl'. 
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m e  allowed wavenumbers are limited to a truncation domain K of the phase space, 
so that the stream function or any scalar field is 

ILw( r )=  C $ w k ( P k ( r ) *  
k e K  

Since the Jacobian operator in (1) is quadratic, it contains some contributions from 
wavenumbers outside K which have to be removed for consistency of the truncation 
through time evolution. In the classical Galerkin approximation, this is performed by 
projecting the total Jacobian onto each mode (elk of K by a scalar product. We thus 
replace (7) by 

q w k + ( ( P k ( r ) J ( $ L v +  $ w ,  q x ' ) ( r ) ) =  Fk (20) 

g w k + ( ( P k ( r ) J ( $ W )  q w ) ( r ) ) - C  r , A - ' J ( ( P k ,  q w ) ( r t )  = F k .  

which can also be put into the form 

(21) 
I 

The main interest of the projection (21) is that it minimises the error on the contribution 
from the continuous field. The truncation of the Jacobian in K is exactly taken into 
account and the neglected part is orthogonal to all modes of the truncation. Con- 
sequently, in the inviscid case and in the absence of vortices, equation (21) conserves 
the energy and enstrophy of the continuous flow. Subsequent loss of conservation can 
be due to the time integration scheme. Restoration techniques (equations (27)-(29)) 
can be extended to constrain the invariant through time stepping, but it is generally 
experienced that a sufficiently small time step introduces only negligible fluctuations. 
Although the higher moments of the vorticity are not strictly conserved, it is generally 
believed that conservation of energy and enstrophy for the non-linear operator is 
essential for the study of turbulent inertial ranges. 

These properties do not extend straightforwardly when vortices are incorporated 
in the system. In this case, the formal properties of quadratic integrals established in 
9 2.2 are not satisfied when the Galerkin approximation is applied to the wave field. 
More precisely, the truncation does not yield a variation of the interaction energy and 
enstrophy between waves and vortices which is consistent with (11) and (13). 

However, the enstrophy of the waves Zuw = $ X k c  qZwk is still conserved: 

Equation (22) holds because qw does not possess, by hypothesis, any components on 
modes external to the truncation domain K,  and therefore the truncated form of the 
scalar product (qwJ)  is exact. We assume here an exact computation of the truncated 
part of the Jacobian J ( $  sub U, q w ) .  Since qw is truncated inside K,  this is possible 
using a pseudospectral method and an expansion of in eigenmodes truncated at 
k,,, where k,,, is the largest wavenumber within K. In this case, the mesh of the 
colocation grid should be three quarters of the one used for wave-wave interactions 
only. In practice, these criteria can be somewhat relaxed since there is no need to 
correct errors beyond the precision of the computer. Similarly, we obtain 
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which coincides with equation (1 5 ) .  It is clear that equation (16) is not modified either 
since the interaction between vortices is left unchanged by the approximation of the 
wave field. 

The interaction enstrophy between waves and vortices is now 

Using (6), (20) and (9), its time evolution is given by 

z u w = c r f ( J ( $ w + $ u ,  q w ) ( r t ) -  k s  K ( ( P k 5 ( 9 , + $ u , q w ) ) ( P k ( r l ) ) .  (24) 

The two terms on the right-hand side of (24) do not cancel because of the existence 
of a non-zero component of the Jacobian J outside the truncation domain K .  In other 
words, the conservation of Zu, requires that equation (7) is exactly satisfied at the 
location of each vortex. When we apply approximation (20), equation (7) is no longer 
satisfied at any prescribed point but only as an average over the whole domain. 

In a similar way, we obtain an expression for the variations of the interaction 
energy E,, = - E l  Z k c K  r l $ w k ( P k ( r , ) :  

g u w  ( ( P k ( r r ) ( ( P k A - ' J ( + u + ( L H ' ,  s w ) ) - J ( $ u ,  $ w ) ( r t ) ) .  (25) 
f k c K  

Here the second term on the right-hand side of (25) balances Eu as in the continuous 
case but the first term does not balance E,. The time variation of the total energy is 

which generally is different from zero. 
Equations (24) and (26) show that the non-conservation is due to the lack of locality 

of the dynamics of the continuous field and is recovered as A goes to zero. This is to 
be expected in view of our discussion in § 2.1. However, there is a major difference 
between ET and Zuw. Whereas Z,, depends only on local distribution of the vorticity 
field, ET is dependent on non-local quantities, as is seen in (26) through the operation 
A-'. Hence the conservation of energy in the system is subjected to much less severely 
local constraints than Zuw. It is thus interesting to explore the possibility of recovering 
ET, even for highly truncated systems. The result is readily obtained if we choose a 
truncated non-linear tendency which minimises the distance in phase space with the 
Galerkin approximation under the constraints Zw = kT = 0. This variational problem 
is easily formulated, introducing three Lagrange multipliers. Using the previous 
definitions, we see that the constraints are linear in the q w k :  

The variational equation reduces to 

for each k E K .  
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The elimination of q w k  in (27) and (28) using (29) leads to a linear system in the 
Lagrange multipliers which can be solved at each time step. Then (30) gives the 
non-linear contribution to q w k  and the full tendency is obtained by the addition of Fk. 
The resulting set of equations will be referred to in the following as type-1 equations, 
type-0 equations being the unmodified set of Galerkin equations. 

We can generalise the above-mentioned method in order to conserve the quantity 
Zuw. In this case we add to equations (27) and (28) the constraint 

and equation (29) becomes 

q w k  + ( q k J ( $ u  + $ w ,  q w ) )  + A l q w k  

+ A 2  k s K  c P k ( r i ) + A 3 (  i k E K  k W 2 q w k -  k e K  c k - 2 r i P k ( r i ) ) = o .  i (29’) 

Equation (29’) will be referred in the following as type 2. Type-2 couplings present a 
major drawback: in the limit of vanishing vortices we do not recover the standard 
Galerkin approximation. Indeed, condition (30) imposes exact vorticity conservation 
at a vortex location regardless of its amplitude. This implies a set of arbitrary constraints 
when the vortex amplitude vanishes. 

As discussed in 0 1, there are essentially two physical situations in which one is 
interested when studying wave-vortex interactions: ( i )  a small number of waves 
interacting with many weak vortices and (ii)  a small number of strong vortices interact- 
ing with many waves. In the second case the non-conservation of Z,, and ET induces 
only small fluctuations around the average values, with a variance going to zero as the 
number of waves increases. Hence the simplest coupling, type 0, should be used in 
this case. On the other hand, the situation is completely different for case (i)  where 
the continuous field is represented by a small number of waves. In this case we can 
still distinguish between two main possibilities: (1) A’> (( S r ) 2 )  and (2) A2 < (( Sr) ’ ) ,  
where A is the smallest characteristic scale of the wave field and (( Sr)’)  is the average 
quadratic distance between vortices, namely 

( ( S i - ) ’ )  = ( 1/ N 2 ) Z i ,  j (  r, - rj)’ 

N being the number of vortices. Case (1) means physically that the vortices are 
clustered on a scale smaller than the wave field. Hence it is unphysical to prescribe 
any localised constraints to the large scale flow using the invariant Zuw. On the other 
hand, the conservation of energy can play a significant role in this case because of the 
well known property of 2~ flows to transfer energy from small to large scales. Hence 
we can conclude that a type-1 coupling should be used to investigate the properties 
of the system. 

We now consider the case A’ < ( ( s r ) ’ ) .  In this case the average distance among 
vortices is larger than the characteristic scale of the system. We are interested in the limit 

I N-rm i 
N + C O  max lril +o lim N max Ir,( = C < CO. 

Let 
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We can consider xl(t) as a stochastic process of variance af. Because A'> ( ( 8 r ) 2 )  we 
can also assume that 

(x,(t)x,(t)) = 6 , d .  

It follows that 

c2 c2 
= & , v , h , X , )  = w r , u , ) 2 ~ N z  ZP,  s- max U? 0. 

N I  

Similar conclusions hold for the energy conservation. The above argument suggests 
that the difficulty of conserving the formal invariants Z,, and E, is essentially of the 
same kind as in case (ii), i.e. a small number of vortices interacting with many waves. 
Hence type-0 coupling will be physically sufficient to describe the properties of the 
system. 

In view of this discussion we will not consider type-2 coupling to be relevant in 
wave-vortex dynamics in any case. 

4. A simple analytical example 

The simplest model that can be discussed is the dynamics of a single Fourier mode 
interacting with one point vortex. We shall consider a channel geometry 0 < x < L, 
0 < y < D with periodic boundary conditions in x and Y x  = 0 at y = 0, D. The wave 
field Y w  is represented by 

q, = 21,bs,, sin nky sin mrkx+2I,bC,, sin nky cos mrkx (31) 
where k = r /  D and r = D/ L. Without loss of generality we choose n = m = 1. Using 
the definition 

gCll + i ~ , b . ~ , ~  = P e'' (32) 
we can easily derive the equations for p, 0, g and q where 6 and q are the coordinates 
of the point vortex in the channel. 

In this section we consider type-0 dynamics only, type-1 dynamics giving trivial 
results in this case, namely no time variations. After some simple algebraic computa- 
tions we obtain 

p = 0  

8 = - rk2r  sin 2kq 
(33) 

(34) 
4 = 2 kp cos kq cos( 0 - r e )  (35) 
i = 2rkp sin kg sin(0 - r e ) .  (36) 

q = e - r&+ kq (37) 

p = e - r e - k q .  (38) 

Let us introduce the variables 

We can rewrite equations for p, 0, 5 and q in the following way: 

q = -rk2r sin(q - p )  -2rk'p cos q 

p =  -rk2rsin(q-p)-2rk2p cosp. (40) 

(39) 
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These equations show that the motion can be periodic or quasiperiodic which implies 
that 0, 5 and 7 are periodic or quasiperiodic functions in time. Thus, while the 
amplitude of the wave is not affected by the presence of the vortex, the phase of the 
wave is strongly dependent upon the position of the vortex. 

This result suggests that when more than one vortex is present in the system, then 
the Fourier modes may display random phase behaviour. Recently, Babiano et a1 
(1987) have integrated numerically the 2~ Navier-Stokes equations randomising the 
phase of each Fourier mode every time step. At variance with previous results, they 
found k-3 inertial range for the system. Moreover, it is known (Babiano e? a1 1987, 
Benzi et a1 1987) that the turbulence field outside coherent structures has a k - 3  energy 
spectrum. Therefore we can speculate whether the Kolmogorov-like background field 
in 2~ turbulent flows can be induced by the randomisation of the phases by a mechanism 
similar to that discussed in this and in the following section. 

5. Numerical simulation of wave-vortex interaction 

We consider a highly truncated continuous field represznted by five Fourier modes 
which interact with one point vortex. The geometry of the physical system is a channel 
(O< x < L, O <  y < D )  with periodic boundary conditions in x and slip boundary 
conditions in y.  The five Fourier modes we consider are 

$ A = f i s i n 2 k y  (41) 

= 2 sin ky cos rkx IL1,=2sin kysinrkx (42) 

(43) 

(44) 

Having in mind future geophysical applications, we choose r = 1.2 and k = 0.5236, 
which are characteristic values for an atmospheric channel at mid-latitudes ( L  = 
30000 km, D=6000km and n =6). All the numerical simulations were done with a 
point vortex initially located at (0, D/2).  The initial value of the Fourier modes has 
been chosen arbitrarily once for all the numerical integrations. 

We denote by r the vorticity of the point vortex. We start by considering the 
simplest case r=O, i.e. no wave-vortex interaction is acting on the system. The 
equations of motion for this case can be obtained by projecting the Euler equation 
onto the subspace spanned by the Fourier modes. It is easy to show that the behaviour 
of the dynamical system so obtained is quasiperiodic: two frequencies characterised 
the time evolution of each Fourier mode. This can easily be seen by computing, for 
instance, the power spectrum of Y A  as shown in figure 2. 

The quasiperiodicity of the stream function implies a quasiperiodicity of the velocity 
field which can induce Lagrangian turbulence in the system. This is indeed the case. 
Figure 3 shows the x coordinate of a Lagrangian particle advected by the quasiperiodic 
flow. The motion of the particle is strongly chaotic in both directions. 

We now consider the case r f 0. For small values of r, the point vortex will be 
advected as a Lagrangian particle, i.e. performing a chaotic path in the domain. This 
chaotic behaviour will perturb the wave field because of wave-vortex coupling, i.e. the 
Lagrangian turbulence will act as a perturbation on the Eulerian component of the 

$3r = 2 sin 3 ky cos rkx 

* w  = v A $ A  + * I  &Is + ~ I d l  c + *3s$3s + 9 3 c $ 3 c *  

4t3, = 2 sin 3 ky sin rkx 

where k = r/ 0, r = nD/ L and n is an integer. The continuous field is given by 
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Figure 2. Power spectrum of ‘ P A ( f )  when no vortex is acting on the Eulerian equations 
truncatec to the five modes (41), (42) and (43). The motion of the system is quasiperiodic 
with two main frequencies shown in the figure. 

t 

Figure 3. Time behaviour of the x coordinate advected by the quasiperiodic Eulerian flow 
as described by the five Fourier modes (411, (42 )  and (43 ) .  The Lagrangian turbulence of 
the particle path is clearly shown by the random behaviour in time of its positions. 

flow. The effect of this perturbation depends on the choice of the coupling between 
the continuous field, i.e. the Fourier modes, and the point vortex. In § 2 we discussed 
three different kinds of couplings and we observed that type-2 coupling, which forces 
conservation of Z,,, shows unphysical drawbacks due to its singular behaviour when 
r, + 0. Hence we shall only consider type-0 and type-1 coupling. 

Figures 4 and 5 show the x coordinate of the vortex for type-0 and type-1 coupling 
respectively, and for increasing values of r. As expected, for small values of r the 
chaotic behaviour of the vortex path is similar to that of a Lagrangian particle. For 
large values of r the point vortex cannot be considered as a perturbation on the wave 
field. Figures 4( c)  and 5( c) show that the vortex is performing fast and small oscillations 
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( c )  show the x coordinate of the vortex position 
0 100 200 300 ’ 400 500 ’ respectively for r =  lo-’, r being the --L 

t vortex intensity 

around a fixed position. There is no qualitative difference between type-0 and type-1 
coupling. The same is indeed true for all other variables of the dynamical system. 

The ‘random‘ perturbation of the Lagrangian turbulence on the Eulerian variables 
can be easily described in terms of the power spectrum of the qA variable as previously 
done for the case r=O (see figure 2). Figure 6 shows the power spectrum of qA for 
type-0 coupling. The major peaks of the power spectrum are still present for r = 
both for type-0 and type-2 cases, but disappear for r = In this case the Lagrangian 
turbulence ‘randomises’ completely the Eulerian field. For higher values of r the 
power spectrum of PA shows some major peaks, i.e. we recover a more ordered 
behaviour which is probably due to the fixed position of the vortex. 

The ‘randomisation’ of the Eulerian field can be better evidenced by projecting the 
motion in the phase space of the system onto the two-dimensional subspace spanned 
by the variables q,cr The case r=O is shown in figure 7. Figure 8 shows the 
same projection for r f 0. As already observed for the power spectrum of ‘PA, for 
r =  a complete ‘randomisation’ of the Eulerian field can be observed. Figure 8 
suggests that the Eulerian field can be approximately described by a ‘random phase 
approximation’ of the same kind as that observed for the background field outside the 
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main vortices in numerical experiments of two-dimensional turbulence. Whether or 
not the two phenomena are connected is still a question to be investigated. 

As we have seen, no major differences are observed between type-0 and type-1 
coupling. Hence, energy conservation is not a major constraint in the dynamics of the 
system. This result allows the possibility of inserting point vortex dynamics in numerical 
spectral codes for high resolution two-dimensional simulations with a relatively modest 
computational effort. Indeed, for type-0 coupling this possibility can be easily achieved, 
the same being much more computationally expensive for the type-1 case. 

6. Conclusion 

In this paper we have shown that a mixed formulation, local-global or discrete- 
continuous, of two-dimensional Euler equations can be given using few physical 
requirements. 
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We point out here several problems for which the proposed method may provide 
an interesting physical framework. 

It is quite possible to generalise the method discussed in 0 2 for dissipative flows. 
There are, in principle, two physical situations: either the vortex field represents small 
scale dissipative effects or it represents large scale coherent structures like those visible 
in figure 1 .  In the first case, the vortices will induce small random perturbations via 
Lagrangian turbulence and may considerably modify the statistical properties of large 
scale continuous flows. This will be interesting when multiple regimes are present 
within the large scale dynamics of the flow since transition properties are expected to 
depend on the turbulent activity. Examples of this kind can be given for atmospheric 
dynamics of ultralong planetary waves (Reinhold and Pierrehumbert 1982). Alterna- 
tively, when the vortex field represents coherent structures one can discuss the stability 
of vortex clustering induced by the continuous background field. One particularly 
interesting question which can be addressed is whether the clustering of vortices, 
previously observed in numerical simulations (Aref and Siggia 1980), is either 
emphasised or depressed by the effect of the wave field. Moreover, one can study the 
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splitting in predictability with respect to amplitude errors in the continuous field and  
errors in the positions of the vortices. Indeed it has been observed (Basdevant and  
Legras 1986) that the error field of the first Lyapunov exponent for two-dimensional 
Navier-Stokes equations is mostly concentrated near the coherent structures. This 
observation can be studied in detail using one of the proposed methods of Q 3. 

Such numerical simulations may also provide a way to separate the Lagrangian 
and Eulerian parts of the turbulence. In both cases which have been mentioned, we 
may develop an  averaging procedure for the fast components of the system: either the 
waves or the vortices, depending on the limit which is considered. For instance, we 
would expect that if the vortex field represents coherent structures, the background 
field would behave essentially as a passive scalar and  would satisfy a non-intermittent 
Kolmogorov law. These questions are presently under investigation by the authors. 

Appendix. Stream function of a single vortex 

The stream function of a single vortex is expressible in terms of usual functions only 
in the simplest cases. With periodic boundary conditions in planar geometry, infinite 
series are obtained which converge slowly in their original form. However, an efficient 
procedure due to Nijboer and  De Wette (1957) leads to a new expansion which 
converges rapidly. 

Let us first recall that, in the infinite plane, a single vortex of charge r located at 
the origin induces a stream function field 

r r  
$(r) =- In - 

271 ro 

where r is the Euclidian distance to the origin and ro an arbitrary constant radius. 
On a sphere, a similar expression obtains. For a vortex located at the pole, the 

stream function is 

r 
+ ( M )  =-ln(1 -cos e)  

471 

where B is the colatitude of the point M. 
On a periodic plane, with periods L and D in the x 

expressions are no longer available. For a single vortex 
and y directions, such simple 
located in (xo, y o ) ,  one has to 

sum the contributions of all its images locatedat (xo+ nL, yo+ mD) .  Indeed, the total 
vorticity for this distribution is infinite and  the stream function diverges at any point. 
It is thus necessary to add a uniform vorticity field which compensates exactly the 
charge of the vortex on the mesh area L X  D. 

Then the vorticity field can be formally expanded as 

r -- - I' exp[ik(r - roll 
L D  n.m 

where k = 271(n/L, m / D )  is a wavevector and the prime denotes summing over all 
couples of integers omitting n = m = 0. 
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The stream function induced by (A3) is 

('44) 
r i  

$ ( r ;  r o ) = - -  L ' 7 e x p [ i k ( r - r o ) ] .  
L D  n.m k 

Equation (A4) is suitable if we need to perform an  expansion of t) in Fourier modes 
in order to use a transform method. However, if we want to compute $ ( r )  at a given 
location, we need to use a large number of terms of the series to get reasonable accuracy 
due to the poor convergence of this latter function. 

The computational cost can be cut considerably if we use a resummation technique, 
developed by Nijboer and De Wette (1957) and applied by Seyler (1976) to equation 
(A4) in a squared geometry. We refer to these authors for a detailed derivation and  
only give here the resulting expression for $ ( r ;  ro) ,  which is 

r 1 
LD n,m k 

$ ( r ;  r o ) =  -- x ' 7 e x p [ i k ( r - r o ) ]  exp(-k'L2/4n-) 

+- :n-(i --c n,m E ,  { 77 -- n ) * + ( ~ - m ~ ) ~ ] } )  L 

where E , ( u )  is the exponential integral 

E , ( u )  = e-'t-' dt. I,: 
We see that the first term on the right-hand side is now a rapidly converging 
The second term can also be estimated with a few terms of the series since 
decreases with U more rapidly than an exponential. Furthermore, we d o  not really 
need to compute E ,  since only the derivatives of $ are of interest in the advection. 
Therefore we obtain 

with 

One can easily check that the diverging term for small r - ro in (A5) leads asymptotically 
to the form (Al ) ,  i.e. in the immediate vicinity of the vortex the boundary effects are 
not felt. 

In the case of channel geometry with periodic conditions with period L in the x 
direction and  a width D with free-slipping conditions in the y direction, we have to 
consider for an  individual vortex all its images produced by mirror symmetry with 
respect to the rigid boundaries. Thus, we have to sum the contributions of two periodic 
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arrays of vortices of periods L and 2 0  (equation ( A l ) )  in x and y given by formulae 
(A5)-(A7). The first one has vortices identical to the original vortex at locations 
( x , + n L ,  y o + 2 m 0 ) ,  and the second one has vortices of opposite sign at locations 
( x , + n L ,  -y0+2m0) .  

An additional feature of channel geometry is that the total vorticity is zero in a 
mesh cell ( L ,  2 0 )  without any need to add a continuous vorticity as in the doubly 
periodic plane. This implies the existence of an analytic expression of the stream 
function in terms of complex elliptic functions. The corresponding formulae are given 
by Morse and Feshbach (1953, p 1239). 
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